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ABSTRACT

Automatic Music Transcription (AMT) is a fundamen-
tal problem in Music Information Retrieval (MIR). The
challenge is to translate an audio sequence to a symbolic
representation of music. Recently, convolutional neural
networks (CNNs) have been successfully applied to the
task by translating frames of audio [44, 46]. However,
those models can by their nature not model temporal re-
lations and long time dependencies. Furthermore, it is
extremely labor intense to get annotations for supervised
learning in this setting. We propose a model that over-
comes all these problems. The convolutional sequence to
sequence (Cseq2seq) model applies a CNN to learn a low
dimensional representation of audio frames and a sequen-
tial model to translate these learned features to a symbolic
representation directly. Our approach has three advantages
over other methods: (i) extracting audio frame representa-
tions and learning the sequential model is jointly trained
end-to-end, (ii) the recurrent model can capture temporal
features in musical pieces in order to improve transcrip-
tion, and (iii) our model learns from entire sequences as
opposed to temporally accurately annotated onsets and off-
sets for each note thus making it possible to train on large
already existing corpora of music. For the purpose of test-
ing our method we created our own dataset of 17K mono-
phonic songs and respective MusicXML files. Initial ex-
periments proof the validity of our approach.

1. INTRODUCTION

Automatic music transcription (AMT) is a challenging
problem for humans and machines. The task at hand is
to find a mapping f : x → y that translates an audio se-
quence x to a symbolic representation of that sequence y.
The difficulty is no surprise because in the most general
case, polyphonic AMT, separating the sources of sound
alone, e.g. one key stroke on a piano from another, is
already a highly under determined problem. Thus, any
sufficient model needs to learn strong priors over the au-
dio sequences it receives as input in order to perform well.
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Even if a model does learn these priors sufficiently it can
not be guaranteed that the task at hand is well defined.
For example, the harmonics of two distinct notes of pos-
sibly different instruments can have complex interactions.
Furthermore, noise or recording technique may limit the
prior assumptions that can be made. The space of expected
events is huge as well: Musical pieces come in a great
range of styles, forms, instrumentations and even playing
techniques. However, the fact that machine performance
lags behind human performance [30] is a strong indicator
for the room of improvement for these models. Thus it
is reasonable to believe that a good model needs to have
the capacity to learn priors over musical sequences for ex-
ample the (probabilistic) rules western music is following
with respect to tempo, harmony or timbre. It has been the
subject of several studies to work in this prior knowledge
without restricting the flexibility of a model too much. One
of the key limitations for state-of-the-art models is the lack
of annotated data of sufficient size and diversity.

Notice that ATM falls in the regime of perceptional
problems. Within this field, deep learning has been con-
tributing remarkable improvements on several tasks, ini-
tially mainly in computer vision (CV) later also in several
other domains such as natural language processing. There
is reason to believe that Music Information Retrial (MIR)
tasks are more challenging than CV tasks for example due
to the ambiguity of annotation even to human perceivers.
However, several pioneering studies in deep learning have
shown significant improvement in various MIR challenges
such as onset and structural boundary detection [43, 49],
piano transcription [44], genre classification [18, 50] or
sound generation [5] to just name a few. This gives rea-
son to believe in the power of such techniques.
Within the deep learning domain there are two popular
models: the Convolutional Neural Network (CNN) and the
Recurrent Neural Network (RNN). CNNs had enormous
success in classification tasks such as image recognition.
They seem to break the curse of dimensionality by learn-
ing locally low dimensional representations of their input.
By stacking many of these modules in a hierarchical man-
ner, a global understanding of the input as a whole can
be achieved (for illustration see [55]). The other popu-
lar model, RNNs, is applied to sequence modeling. These
models can be understood as a generalized version of hid-
den Markov models. They are used for language model-
ing such as text generation or language translation. For
the latter example sequence to sequence (seq2seq) mod-



els, a subclass of RNNs, are well known. Here a sequence
of, for example, English is feed into a neural network to
output a hidden state that contains all the information of
the sequence. This hidden state is then fed into another
model that generates the sequence with the same meaning
but in a different language. This model is superior to oth-
ers because it does not translate ”word by word” thus can
for example deal with different grammatical structure from
source and target language such as word order.

In music translation tasks such as optical music recog-
nition or music transcription, we are often faced with the
same problems. Dependencies need to be ”kept in mind”
and later be remembered at a different place in the se-
quence, for example when translating sheet music to pi-
ano roll representation one needs the model to have the
capacity to remember the key signature. This is why we
propose to apply the seq2seq model to music translation
tasks such as ATM. However, since audio streams are very
high dimensional we propose to preprocess the data by first
computing a spectral representation of the audio input and
consequently applying a CNN for dimensionality reduc-
tion before its fed to the seq2seq model. The CNN and
seq2seq model can be trained jointly and end-to-end and
thus benefit one another. Similar to the original proposed
seq2seq models that train on entire sentences of source and
target language rather than words by word translations the
annotation effort to train these models is minimal since
large corpora of suitable training data already exist.

We relate to work of others in the next section. In sec-
tion 3, we will outline how we create a simple dataset to
test out method. In section 4, we will describe the proposed
method in detail followed by inital experiments and and
extensive discussion of model criticism and future work in
section 5 and 6.

2. RELATED WORK

AMT systems are usually complex pipelines that perform
the following subtasks: pitch detection, onset/offset detec-
tion, instrument identification, rhythm parsing, identifica-
tion of dynamics and expressions and typesetting. Depend-
ing on the context, an AMT system for western music does
either percussive instrument transcription or multi-pitch
analysis. The latter one knows two main approaches: anal-
ysis on the frame and on the note level. Note level analysis
identifies notes by onset and offset detection. The identi-
fied notes are consequently classified [13, 22, 31, 37, 38].
However, a bottleneck of these methods is the accuracy of
the onset detection method. Another unsupervised method
is clustering harmonic temporal structures [28]. Alterna-
tively, the audio signal can be modeled as a hidden Markov
model that transitions between notes [42]. The same ap-
proach can also be used to model the signal as a mixture of
note spectra [14, 24].

In contrast to note level predictions, frame level ap-
proaches subdivide the audio stream into temporally equiv-
alent frames. Multi-pitch prediction is performed on each
frame independently. The predictions are usually made
in the time or frequency domain. More specifically for

time domain models, there are biologically inspired mod-
els [31,34,48] and probabilistic models [12,16,52] . Most
recent algorithms perform in the frequency domain. Here
for each frame a spectral representation such as the ERB
filterbank, STFT or CQT spectrum, is computed.

The central idea of frequency domain approaches is
that the given spectrum is a linear superposition of sev-
eral pitches’ spectra. [29] and [2] subtract detected pitches
from the signal spectrum and iteratively proceed until the
spectral frame is explained sufficiently. A range of meth-
ods focused on the most dominant peaks in the spec-
trum [21, 23, 39, 40, 53]. The most sophisticated meth-
ods in this area model the full spectrum either as a mix-
ture model [26, 28, 45, 54], compute the eigen-spectra
[1, 3, 6–9, 17, 25, 27, 37] or perform classification on the
frames [10, 31, 36, 41, 44].

To our knowledge, our method is the first proposed that
does not a ”word-by-word”/ ”frame-by-frame” translation
but rather gathers the information of a sequence and trans-
lates it as a whole to a symbolic representation. The ad-
vantage of that model is that it can learn relevant priors on
the signal since it does not consider frames independently.
These priors could learn concepts from data that map our
understanding of musicology and are thus expected to be
superior to other methods. Furthermore, while still be con-
sidered supervised models seq2seq models have little la-
beling work.

3. DATASET

In the context of this project, we collaborated with the
MuseScore sheet music archive [35], a public database of
user-generated scores. The archive hosts scores from var-
ious genres, clefs, key and time signatures. The data is
originally stored in MusicXML format. It serves as basis
for generating audio input files and corresponding ground
truth. From the entire data base we extracted 17K mono-
phonic scores and if available BPM rates. These were ran-
domly assigned to training (60%), validation (25%) and
test (25%) set. A list of the specific files in use can be
found online 1 .

More precisely, we generated data points in the follow-
ing fashion, a MusicXML score is split such that one frag-
ment contains maximally 4 bars. We do not generate the
entire sequence but splits to guarantee approximately equal
length of sound files. This is not a general limitation of this
method but does allow us to train the model faster. For the
audio creation we chose the BPM rate as provided by the
particular MusicXML file. If no rate is available we uni-
form randomly sample a rate in [80, 180]. We generated
audio sequences with the timidity synthesizer 2 using the
fluid general midi sound font for piano and stored them as
mp3. Labels are threefold: they provide information about
the pitch and the duration of a note in quarter notes and
seconds. Pitch values are represented as categorical data in
their Western notation. Note that one pitch class is the rest,

1 https://github.com/anonymous
2 https://github.com/m13253/timidity



notated as r. Alternatively, they can be represented as con-
tinuous labels according to their frequency. In this setting,
rests can be a problem since there is no frequency connect
to silence. We choose a high negative value to represent
a rest. Duration values are given in quarter length or sec-
onds. The easiest encoding is to choose continuous labels.
However, in the case of quarter length labels we can also
rely on categorical data. Note that we can use the given
data as categorical or continuous labels. The stop token is
chosen to be (r, 0). Finally, we restrict the maximum num-
ber of events in one sequence to 48. Note that for training
we need one pair representing pitch and duration.

4. METHOD

We introduce the Convolutional sequence-to-sequence
(Cseq2seq) model. We represent an audio stream in the
frequency domain. Consequently, the stream is fragmented
into a series of overlapping spectrogram excerpts. Each
fragment is fed into a CNN for dimensionality reduction.
The reduced representation serves as input to an RNN
model that encodes the information in the sequence. An-
other RNN model serves as decoder to generate the output
sequence.

4.1 Preprocessing

We generate a spectral representation of the input se-
quence. For each audio sequence, we compute a magni-
tude spectrogram with a window size of 46.6 ms (2048
samples at 44.1 kHz) and 50% overlap. We apply an equiv-
alent rectangular filterbank of 200 triangular filters from
27.5 Hz to 16 kHz. The entire preprocessing pipeline was
realized with Essentia [11]. Alternatively, we provide con-
stant Q transformed sequences. With 16 bins per octave
and 7 octaves resulting in 112 bins. This feature was com-
puted with librosa [33].

4.2 Convolutional Sequence-to-Sequence model

The spectral representation of a musical piece with index
i is split into a series of spectrogram excerpts X(i) =

{x(i)
t }Tt=1 of T frames with 25% overlap. We propose to

couple a CNN with a seq2seq model and train the com-
bination jointly. The CNN represents the automated fea-
ture extractor aka for each except x(i)

t it extracts meaning-
ful information from the spectral representation and com-
presses it. This low dimensional representation x̃(i)t is than
the input to the recurrent model that decodes the sequence
X̃

(i)
= {x̃(i)t }Tt=1 to a hidden state H that ideally con-

tains all information of the sequence much like a sufficient
statistics. Consequently the information is being ”trans-
lated” to the symbolic space with another RNN, the de-
coder, to the output sequence Y(i) = {y(i)

t }Tt=1. More
specifically, we choose LSTM models as our RNNs due
to their ability to learn long term dependencies better . The
whole model is illustrated in Figure 1.

Figure 1. Convolutional sequence to sequence model: A
spectral audio representation of N frames is fed into a
CNN (green). The sequence of consequent representations
is than submitted to an encoder LSTM (purple) that puts
out a hidden state representing the input sequence. This
hidden state is finally used to generate the output sequence
via the decoder LSTM (red). Note that equal color repre-
sents units within the system, each unit shares parameter.
However, the entire system is trained jointly.

4.3 Objective

The model may be trained with categorical data, i.e., pitch
classes and duration in quarter notes or with continuous
labels with frequencies and durations in seconds . The for-
mer method would naturally be trained with the categorical
cross entropy loss, whereas the latter would be trained with
mean squared error.

4.4 Training

The input to the Cseq2seq model are batches of series of
spectrogram excerpts of T frames. Note that the spec-
trograms are padded with zeros so that all sequences in
a batch are equally long. Each frame is passed through the
CNN. The representation is than passed on to the LSTM-
encoder, which computes a hidden state. Based on this
hidden state, an LSTM-decoder generates an output se-
quence to match the labels given as (pitch, duration) which
is padded as well with stop tokens.

We train the system with sequence mini batches of size
64. The objective is the categorical cross entropy or mean
squared error depending on the labeling we choose (see
section 3). We use the Adam optimizer with a notability
small learning rate of 8× 10−4. We apply 15% dropout to
the inputs and 25% in the convolutional network. We train
for 50 epochs. Training a single Cseq2seq on an Nvidia
GTX Titan X graphics card took 30h to 60h. Note that the
method is almost trainable end-to-end, however, the spec-
tral representation can be seen as hand engineered feature.

5. EXPERIMENTS

We present initial experiments with the Cseq2seq model
on the Musescore dataset. While the novelty of our ap-
proach does not allow us to compare with current methods



directly, we determine the best modeling choices and ex-
amine how sensitive the model is to augmentation.

5.1 Evaluation

Because our approach is so different from other methods
most of the common evaluation measures can not be ap-
plied directly. Our method can neither be specified as
frame nor as note based system. Since it is translating an
audio stream directly into symbol representation. We will
instead report a pitch and a duration accuracy for categori-
cal data. If the system puts out a correct pitch and duration
this will be a successful note detection, which will also be
reported. In the case of continuous output, following the
authors of [20] and [28], duration is counted as correct if
it is within ±50ms of the ground truth. The pitch will
be rounded to its next class. Note that our system can by
definition not produce any false positives or negatives, all
output is regarded as a prediction.

5.2 Initial experiment

We perform initial experiments to determine successful
models. First, we test one of the most important model-
ing choices: weather to predict categorical or continuous
outputs. Categorical durations will be presented in quarter
notes, continuous ones in seconds. Obviously, durations
and pitches are (almost) linearly related in the proposed
representations thus we expect continuous output to per-
form well. On the other hand, neural networks are known
to perform best on categorical data. To our surprise, cate-
gorical prediction networks outperformed continuous ones
strongly even though they had to guess the note duration
with different BPM rates. Thus all future experiments will
be carried out on categorical output networks.

We furthermore tested the effect of log-scaling and nor-
malizing the spectral representations. For the CQT repre-
sentations, we find those measures to not perform better
than the raw input. ERB bands on the other hand benefit
from normalization.

5.3 Feature extractor

Computing an optimal representation for the sequential
model is an important part in the translation process. Our
method consists of ”hand engineered” features, the spec-
tral representations, and learned features, the CNN part of
the model. We experiment with different choices for ei-
ther of the two components. We vary the spectral repre-
sentation between ERB bands and CQT features and ex-
periment with 3 different network architectures. We call
them A, B and C. The motivation for these choices is the
following conflict. Introducing convolutional layers and
sub-sampling operations introduces translation equivari-
ance and invariance, respectively, a feature that we might
not desire in the frequency domain. Thus we test a fully
connected architecture in model A, an architecture with
strided convolutions only in the time domain and finally
a model with both. The precise specification can be found

A B C
layer 1 1024 16 × [5,3], [1,2] 16× [5,3], [2,2]
layer 2 512 32× [5,3], [1,2] 32 × [5,3], [2,2]
layer 3 256 32× [5,3], [1,2] 32 × [5,3], [2,2]
layer 4 256 256

Table 1. Network architectures for feature extractor mod-
els. Fully connected layers are simply identified by num-
ber of units, convolutional layers are specified # of filters
× kernel size, striding
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Figure 2. We test our model on various feature extractors.
We report pitch, duration and note accuracy.

in table 1. For all experiments we set the following hy-
perparameters, for the activation functions we choose relu
units and the LSTM has 256 units. Furthermore, we use
dropout with a probability of 25% and a window size of
3.8s with 50% overlap.

The results of this experiment are visualized in figure
2. We see that there is barely a difference between the
two spectral representations. However, the choice of model
does seem to matter. Somewhat counterintuitive model C
works best. We suspect that to be related to the importance
of dimensionality reduction.

5.4 RNN capacity

After having established good choices to extract features
from incoming frames, we turn to an optimal recurrent
model. There are two quantities that need to be chosen
carefully. One is the information that needs to be encoded
by the feature extractor and one is the amount of informa-
tion to be encoded by the recurrent model. These prop-
erties correspond to the window size and the amount of
hidden units in encoder and decoder, respectively. Ideally,
there is a balance between the work the feature extractor
and the recurrent model need to accomplish. Too small
sizes window sizes might be a problem for the RNN be-
cause it can not resolve long time dependencies. Too large
sizes might be a problem because the CNN needs to store
too much information in the features. In this experiment,
we vary window sizes from 1.8s and 3.7s to 5.5s. Further-
more, we vary the number of hidden units in both LSTMs
between 256 and 512. We fix the feature extractor to ERB
bands and a CNN model with architecture C. We continue
training with the same dropout rates as in the previous ex-
periment. Again we train the model for 50 epochs with
Adam. We present results on our validation set in figure 3.

We find the best model performance with large recur-
rent model capacity and a small window size. This finding
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Figure 3. We optimize the proposed model’s recurrent part
on the validation set. We experiment with different varia-
tions of window size and recurrent model capacity. We
report the pitch, duration and note accuracy.

Noise level 0.1 dB 1 dB
Test set without augmentation
Pitch accuracy 0.732 0.418
Duration accuracy 0.853 0.600
Note accuracy 0.666 0.284
Test set with augmentation
Pitch accuracy 0.732 0.725
Duration accuracy 0.852 0.844
Note accuracy 0.666 0.663

Table 2. Final results: We trained the best model architec-
ture as determined earlier on a training set with augmenta-
tions with varying levels of noise. We tested the resulting
model on the validation set and the tested with additional
augmentations relating to the training augmentation.

is not surprising. It is expected that if we segment a se-
quence in many small pieces the RNNs need to have to
resolve longer time dependencies. We clearly see that the
performance drops significantly when we restrict the RNN
capacity to 256 hidden units. In contrast to those results,
the results for the larger context vary only little since RNN
and CNN ”share the work” of encoding more evenly.

5.5 Data augmentation

In a final experiment, we determine if data augmentation
does benefit the training. Data augmentation is a popular
way to enrich artificial data such that it extrapolates to real
wold data, for example, in scenarios where there is only ar-
tificial training data available. We apply pink noise on the
audio sequences and report the accuracy of the validation
data with and without this noise. We present results with
small, moderate and large induced noise levels in table 5.5

We find low levels of pink noise to neither benefit nor
detriment the performance of the network. Moderate noise
does benefit the overall accuracy, whereas too much noise
obfuscates the information in the data.

In our final experiment, we train the network with vary-
ing levels of pink noise by uniform randomly sampling its
dB rate per training example in [0, 1]. We evaluate the per-
formance of this experiment on the test set. For the non-
augmented test set we achieve scores of 0.723, 0.847 and
0.654 for pitch, duration and total accuracy, respectively
and 0.721, 0.845 and 0.650 for the augmented test dataset.
Hence, we can train a single model that is robust to a wide

range of noise present in the signal.

6. DISCUSSION AND FUTURE WORK

In this study we present a novel approach to ATM. Our so-
lution is an important step towards an end-to-end trainable
system. We combine the benefits of differentiable feature
extractors such as CNNs with recurrent models that can
pick up long time dependencies in data. We need both of
these properties to tackle ATM successfully. More pre-
cisely, we propose the convolutional sequence-to-sequence
model. We pass spectrogram excerpts through a CNN,
the consequent representation is fed into a sequence-to-
sequence model. Ideally, the model distributes the diffi-
culty of this task to its components. The problem of rele-
vant feature extraction is carried out by the CNN while the
seq2seq model learns long time dependencies and data pri-
ors such as derived by musicology automatically from the
data. Our model is preferable not just because the model
can capture the complexity of the data well, but it is to
our knowledge, the first method that does not rely on note
level annotations but rather on sequence annotation, i.e.,
audio recordings and respective scores. Thus, we do not
only propose a very flexible model but also one that can be
trained with data that exists en mass already. There is no
need of on- and offset annotations which is often consid-
ered as a bottleneck of ATM methods.

In experiments we determine the best modeling choices
and we can show that the model is robust to synthetic
recording noise. We achieve convincing results on mono-
phonic scores. We are sure we could improve these re-
sults by additional information such as the BPM rate. In
future efforts, we will extend this method to polyphonic
scores. This however does require us to change the label-
ing scheme to a version that is closely related to the MIDI
or piano roll format. We elaborate on the form of such a
format in appendix 8.1.

However, the format is not the only challenge in order
to extrapolate to multi-pitch prediction. Given the pro-
posed multi-pitch labeling scheme, target sequences will
be substantially longer thus our recurrent models will need
more capacity, and further enroll longer sequences over
time through which we need to back-propagate. This poses
substantial computational challenges. To address the latter
one its is recommendable to use a dynamic deep learning
framework such as torch [15] or chainer [47]. To address
the problem of longer time dependencies, we refer to work
by [4], that address this problem with a so called attention
mechanism.

Our main focus and challenge for future work, however,
will be to replace the spectral representation and CNN by a
fully differentiable feature extractor. Recently, there were
promising results such as [19, 46, 51] but also biologically
inspired models [32] that show that this goal is in reach.
The former authors achieve astonishing results by interpret
the CNN as a feature extractor and a recurrent model.

Finally, we want to test our approach on multi-pitch pre-
diction and real world recordings in a competitive setting.
For that we need to make approximations between the ac-



curacy measures in use today and the method that we pro-
posed.

We would like to point out that the proposed method is
a very general approach to address music translation tasks.
Another example that we can easily generalize our method
to would be optical music recognition. But it would also
be applicable over the limits of MIR to tasks such as hand-
writing recognition or video tagging.
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8. APPENDIX

8.1 Extension to Multi-Pitch prediction

The labeling format as presented in the paper can not be
applied to multi-pitch prediction. An extension is however
straight forward. The proposed labeling format relates to
the well known piano roll or midi format. More precisely,
there is a minimum time resolution that defines the length
of an event also known as ticks. Each tick can contain one,
several or no events. There needs to be an indicator for
the start s and the end e of a tick and a stop token S. For
example, we might find the sequence [s C4 C5 e s C4 e s
C4 e s e s e s C5 e S]. The notes C4 and C5 are hold for
three ticks and one tick, respectively. Followed by a three
tick rest and another one tick long C5. Note, that there is no
need for a duration indication in this setting anymore. An
advantage of this notation is that temporal errors can not
accumulate over time. A disadvantage is the categorical
nature of the pitch description. Naturally, we would want a
continuous output since this is to be expected to benefit the
model. However, we believe with good modeling choices
it is possible to work that prior knowledge back into the
model.


